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Elastic properties of a Poisson–Shear material
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A Poisson–Shear material is one which displays sig-
nificant in-plane shear strain when loaded in the out-
of-plane direction. Hence for a prescribed out-of-plane
strain (ε3), we have ε1 ≈ −ε2. To attain this behav-
ior a Poisson–Shear material should, for example, pos-
sess a positive Poisson’s ratio in the 1–3 plane but
a negative Poisson’s ratio in the 2–3 plane, or vice
versa, such that the magnitudes are almost equal. A
Poisson–Shear material, therefore, can be used as a
micro-capsule for squeezing into veins or any small
ducts such that axis-1 is parallel to the micro-duct.
Hence when squeezed along axis-3 the micro-capsule
contracts along axis-2, or vice versa, such that the
transverse cross-section of the micro-capsule contracts
to ease entry. Allowance for expansion along axis-1,
on the other hand, prevents excessive densification,
hence enabling the micro-capsule to perform as drug-
delivery media or for any storage purposes during trans-
port (see Fig. 1 for illustration). Based on strain en-
ergy formulation, the Poisson’s ratio is in the range
−1 < v < 0.5 [1]. Almost all known materials, how-
ever, exhibit positive Poisson’s ratio within the range
0 < v < 0.5. Negative Poisson’ ratio material (also
known as “auxetic” material) has been investigated by
Lakes et al. [2–10], Evans et al. [11–19], Scarpa et al.
[20–22], Baughman et al. [23, 24], Sigmund [25], and
Griffin et al. [26]. The auxetic behavior can be attained
via re-entrant structures (e.g. [9, 16, 22]), chiral hon-
eycomb structures (e.g. [7]), rotating structures (e.g.
[17, 18]) and molecular arrangement (e.g. [13, 26]).
Large positive Poisson’s ratio [27], on the other hand,
can be attained through hexagonal honeycomb struc-
ture, as shown in Fig. 2a, which is an anti-thesis of
the re-entrant structure, as depicted in Fig. 2b. In re-
cent years it has been shown that a combination of both
positive and negative Poisson’s ratio leads to unique
properties. For example, a beam that is functionally
graded from positive Poisson’s ratio on the top sur-
face to a negative Poisson’s ratio at the bottom surface
has been shown to exhibit Poisson-curving behavior,
i.e. prescription of curving gives significant thicken-
ing or thinning depending on the direction of bending
[28]. Alternatively when a material possesses a posi-
tive Poisson’s ratio in one plane (such as 2–3 plane)
and a negative Poisson’s ratio in another plane (such
as 1–3 plane), then significant 1–2 plane shearing is
observed when normal strain is prescribed in the 3-
direction [29]. Schematically, a Poisson–Shear mate-
rial can be obtained via merger of Fig. 2a and b, i.e.
hexagonal honeycomb structures in the 1–3 plane and

re-entrant structures in the 2–3 plane, as furnished by
the representative volume element (RVE) in Fig. 3. The
top or bottom half of this Poisson–Shear RVE struc-
ture can be obtained by folding a sheet of the geom-
etry shown in Fig. 4. Consider an RVE shown in Fig.
3 or Fig. 4 where L = major length before folding,
l = minor length before folding, and b = base, with
1 and 2 corresponding to the in-plane principal axes.
To give v < 0 in 1–3 plane and v > 0 in 2–3 plane,
we let 0 < θ2 < (π/2) < θ1 < π . Recently, a unified
study on the elastic stiffness of a generalized honey-
comb structure, applicable for Poisson’s ratio of either
signs, has been performed [30], whereby the mode of
deformation is confined to be two-dimensional. In this
paper, we extend a similar approach [30] for the case
of Poisson–Shear material [29], in which deformation
is three-dimensional.

For brevity, we employ the notation θi for i = 1, 2.
By virtue of symmetry, one quarter of the RVE is iso-
lated for analysis, as shown in Fig. 5. A kinematics
proof for Poisson–Shearing is given in the Appendix.
In the following analysis, we consider i, j = 1, 2 �= 3
unless specified otherwise. Since (OC) = [bi − (li −
bi ) cos θi ]/2 and (OA) = [(li − bi ) sin θi ]/2, we have
the in-plane extensions

ui = d(OC) =
(

li − bi

2

)
sin θi dθi (1)

and the out-of-plane extension

u3 = d(OA) =
(

li − bi

2

)
cos θi dθi . (2)

Equation 1 shows elongation along axis-1 in terms of
rotation of θ1 hinges and elongation along axis-2 in
terms of rotation of θ2 hinges. Elongation in axis-3
can be described by rotation of θ1 or θ2, as shown in
Equation 2. From Equation 1, elongation along axis-1
in terms of θ2 rotation, and vice versa, can be easily
obtained:

ui =
(

l j − b j

2

)
tan θi cos θ j dθ j . (3)

The torque, T , required to rotate by an angle δθ is as-
sumed linear for infinitesimal deformation

T = kθ δθ (4)

0022–2461 C© 2004 Kluwer Academic Publishers 4965



Figure 1 One application of Poisson–Shear material, in which v31 > 0 and v32 < 0.

Figure 2 Open structures which give: (a) large positive Poisson’s
ratio (hexagonal honeycomb) and (b) large negative Poisson’s ratio
(re-entrant structure).

where kθ is the rotational stiffness of a hinge. Therefore
the potential energy per hinge is

Uhinge = 1

2
kθ (δθ )2. (5)

Suppose there are n1 hinges per RVE rotating in plane
1–3 and n2 hinges per RVE rotating in plane 2–3, the

Figure 3 Geometry of combined hexagonal honeycomb and re-entrant structures.

energy per RVE is

U = n1

2
kθ1(δθ1)2 + n2

2
kθ2(δθ2)2. (6)

The elastic coefficient, Ci j , can therefore be obtained
via energy approach as [31]

Ci j = 1

V0

∂2U

∂εi∂ε j
(7)

where V0 = volume of the RVE before deformation.
For infinitesimal deformation, the change in volume
is marginal compared to the initial volume, therefore
convenient usage of initial RVE volume is valid. By
definition of strain, we have, according to the RVE
geometry:

εi = 2ui

Li − (li − bi )(1 + cos θi )
(8)
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Figure 4 Sheet geometry before folding into top or bottom half of the
RVE.

Figure 5 One-quarter of RVE for analysis.

and

ε3 = 2u3

(li − bi ) sin θi
. (9)

Substituting Equation 1 into Equation 8 gives

dθi = Li − (li − bi )(1 + cos θi )

(li − bi ) sin θi
εi (10)

and Equation 2 into Equation 9 leads to

dθ∗∗
i = ε3 tan θi . (11)

To obtain diagonal terms, Cii , we simply take double
differential

Cii = 1

V0

∂2U

∂ε2
i

; i = 1, 2, 3 (12)

where the stored energy is expressed in terms of εi .
From Equation 6,

U = ni

2
kθ i (δθi )

2 + n j

2
kθ j (δθ

∗
j )2 (13)

where δθ∗
j is the indirect contribution to εi . From

Equations 3 and 8,

δθ∗
j = Li − (li − bi )(1 + cos θi )

(l j − b j ) tan θi cos θ j
εi . (14)

Substituting Equations 10 and 14 into Equation 13 and
taking double differential as described by Equation 12,

we have

Cii = [Li − (li − bi )(1 + cos θi )]2

V0

[
ni kθ i

(li − bi )2 sin2 θi

+ n j kθ j

(l j − b j )2 tan2 θi cos2 θ j

]
. (15)

In order to describe δθ1 or δθ2 in terms of ε3,
Equation 11 is substituted into Equation 6 so that
Equation 12 becomes

C33 = 1

V0
[n1kθ1 tan2 θ1 + n2kθ2 tan2 θ2]. (16)

To obtain C12, we rewrite Equation 6 as

U = n1

2
kθ1(δθ1)(δθ∗

1 ) + n2

2
kθ2(δθ2)(δθ∗

2 ) (17)

where δθ∗
1 is expressed in terms of ε2, and δθ∗

2 in
terms of ε1. Substituting Equations 10 and 14 into
Equation 17, and taking differential as in Equation 7,
we arrive at

C12 =
∏2

i=1[Li − (li − bi )(1 + cos θi )]

2V0

×
[

n1kθ1

(l1 − b1)2 sin θ1 cos θ1 tan θ2

+ n2kθ2

(l2 − b2)2 sin θ2 cos θ2 tan θ1

]
. (18)

To obtain C13 and C23, Equation 6 is written as

U = ni

2
kθ i (δθi )(δθ

∗∗
i ) + n j

2
kθ j (δθ

∗
j )(δθ∗∗

j ) (19)

where, as before, δθi and δθ∗
j are described by

Equations 10 and 14 respectively, in order to be ex-
pressed in terms of εi . Both δθ∗∗

i and δθ∗∗
j adopt the

form shown in Equation 11 in order to be expressible
in terms of ε3. Therefore,

Ci3 = Li − (li − bi )(1 + cos θi )

2V0

[
ni kθ i

(li − bi ) cos θi

+ n j kθ j

(l j − b j ) cos θ j

(
tan θ j

tan θi

)]
. (20)

Consider now a special case whereby

(a) the hinge rotational stiffnesses and equal, i.e.
kθ1 = kθ2 = kθ ;

(b) for a prescribed out-of-plane deformation, we
have equal but opposite principal extensions, i.e. u1 =
−u2; and

(c) in-plane dimensions for RVE are equal, i.e. L1 −
(l1 − b1)(1 + cos θ1) = L2 − (l2 − b2)(1 + cos θ2) =
W .

Conditions (b) and (c) imply (ε1/ε2) = −1, i.e. pure
in-plane shearing as a result of out-of-plane loading—
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hence pure Poisson–Shearing. Since the presently con-
sidered RVE geometry has equal number of hinges ro-
tating about their axes parallel to axes 1 and 2, we
have n1 = n2 = n. Suppose, also, that the rotating arms
are equal in length such that (l1 − b1) = (l2 − b2) = a,
then from Equation 1 we have

(i) sin θ1 = sin θ2 if dθ1 = dθ2

or

(ii) sin θ1 = sin(π − θ2) if dθ1 = −dθ2.

Condition (i) applies for large positive Poisson’s ra-
tio if (π/2) < θ1 = θ2 < π or for negative Poisson’s
ratio if 0 < θ1 = θ2 < (π/2). Condition (ii) applies
for Poisson–Shearing, whereby θ1 = π − θ2 and θ2 ∈
[0, (π/2)]. As such, the elastic coefficients Ci j for
i, j = 1, 2, 3 can be simplified to

C11 = C22 = 2K

sin2 θ2

(
W

a

)2

(21)

C33 = 2K tan2 θ2 (22)

C12 = − K

sin2 θ2

(
W

a

)2

(23)

C13 = C23 = − K

cos θ2

(
W

a

)
(24)

where

K = nkθ

V0
= 8

kθ

V0
(25)

since there are 8 hinges per RVE in both the 1–3 plane
and 2–3 plane, and

V0 = W 2a sin θ2. (26)

In conclusion the Poisson–Shear material has been de-
fined in this paper and, based on a combined hexago-
nal honeycomb and re-entrant microstructures, its elas-
tic properties are derived for infinitesimal deformation.
The elastic coefficients have been arrived at by tak-
ing the double derivative of the potential energy of the
hinge rotational stiffness with respect to the orthogonal
strains. Whilst the diagonal terms (Cii for i = 1, 2, 3)
are positive as expected, the Poisson–Shear materials,
possessing negative Poisson’s ratio in one plane, appear
to give negative stiffness in the non-diagonal terms (Ci j

for i �= j). It now remains to be ascertained if any anal-
ogy for this negative stiffness can be made with those
studied by Lakes et al. [32–34].

Appendix
From the definition of Poisson’s ratio and using
Equations 8 and 9,

v3i = − εi

ε3
= − ui

u3

[
(li − bi ) sin θi

Li − (li − bi )(1 + cos θi )

]
(A1)

Substituting Equations 1 and 2 into Equation A1,

v3i = − (li − bi ) sin θi tan θi

Li − (li − bi )(1 + cos θi )
. (A2)

Since both (li − bi ) and [Li − (li − bi )(1 + cos θi )]
will have to be positive in order to be physically re-
alizable, the sign for Equation (A2) is determined
by θ i . For (π/2) < θ1 < π , we have sin θ1 > 0 but
tan θ1 < 0. Therefore v31 > 0. For 0 < θ2 < (π/2), we
have sin θ2 > 0 and tan θ2 > 0. Hence v32 < 0. Defining
the Poisson–Shear ratio of maximum in-plane shear
strain to the out-of-plane normal strain, we have

vshear = γ12

ε3
= ε1 − ε2

ε3
= −v31 + v32. (A3)

For the special case where L1 − (l1 − b1)(1 + cos θ1)
= L2 − (l2 − b2)(1 + cos θ2), (l1 − b1) = (l2 − b2) and
θ1 = π − θ2, then upon substitution from Equations
A2, A3 becomes

vshear = −2v31 = 2v32. (A4)

For example, if b1 = b2 = 1.5 units, l1 = l2 = 3.5
units, L1 = 3.5 units, L2 = 5.5 units, θ1 = (2π/3) ra-
dian, and θ2 = (π /3) radian, then v32 = −v31 = 1.2 and
hence vshear = 2.4.
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